equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/ G* = = / G* / - .=
Mecânica clássica e mecânica quântica
A dinâmica de uma partícula pontual de massa em um regime não-relativístico, ou seja, em velocidades muito menores que a velocidade da luz, pode ser determinada através da função lagrangiana[6][7]
,
em que (que são respectivamente coordenadas generalizadas para a posição e a velocidade da partícula) determinam o espaço de fase do sistema e é o potencial em que a partícula se move. Minimizando o funcional ação
/ G* = = / G* / - .=
encontra-se a equação de movimento para esse sistema,
,
que é a equação de Newton, desde que .
/ G* = = / G* / - .=Existe outra formulação equivalente da mecânica clássica, conhecida como formulação hamiltoniana e que pode ser diretamente relacionada a formulação lagrangiana acima. Para se fazer contato entre as duas formulações, define-se o momento
,
de maneira que a função hamiltoniana é dada por
,
que para a escolha da lagrangiana acima, tem-se
.
Assim como no caso da função lagrangiana, a hamiltoniana descreve toda a dinâmica de um sistema clássico, portanto, considerando uma variação de tem-se um par de equações diferenciais de primeira ordem conhecidas como equações de Hamilton
,
e que equivale a equação de Newton, que é de segunda ordem. No formalismo hamiltoniano, usando a regra da cadeia, pode-se escrever qualquer variação temporal de uma função , em termos das equações de Hamilton acima, de modo que,
/ G* = = / G* / - .=
onde o parêntese de Poisson é definido como
.
Existem diversas maneiras de realizar a quantização de um sistema clássico, tais como quantização por integrais funcionais e quantização canônica. Esse último método em particular, consiste na substituição do parêntese de Poisson por comutadores[8]
,
onde , são operadores num espaço de Hilbert. Com essas substituições, o parêntese de Poisson entre duas coordenadas generalizadas torna-se
.
Um aspecto importante a ser observado é que os operadores e podem ser representados como os operadores diferencias
/ G* = = / G* / - .=
de maneira que a função hamiltoniana, torna-se um operador no espaço de Hilbert, chamado operador hamiltoniano que atua em uma função
,
que é a equação de Schrödinger.
Teoria Clássica de Campos
A formulação lagrangiana e a hamiltoniana da mecânica clássica são refinamentos da mecânica newtoniana e permite o tratamento de sistemas com um número finito de graus de liberdade. Considerando um sistema mecânico unidimensional com graus de liberdade, que consiste de partículas pontuais de massa , separadas por uma distância e conectadas entre si por uma mola de constante elástica . A lagrangiana para esse sistema é:
.
Esse sistema pode ser estendido facilmente para o limite em que e . No entanto, se o comprimento total do sistema estiver fixo, tem-se o limite contínuo , de modo que a lagrangiana terá a forma
,
onde representa o deslocamento da partícula relativa a posição no instante de tempo . Também, define-se as quantidades .
/ G* = = / G* / - .=Generalizando essa discussão prévia para um sistema relativístico, tem-se uma lagrangiana que será uma função do campo , em que e das derivadas , dessa maneira, o funcional ação pode ser escrito como
.
Finalmente, a lagrangiana pode ser escrita como
,
onde , é conhecida como densidade lagrangiana.[9] A equação de Euler-Lagrange é:
.
Primeiras unificações. Equações relativísticas
Equação de Klein-Gordon
Como foi dito acima, quando Schrödinger primeiro procurou uma equação que regesse os sistemas quânticos, pautou sua busca admitindo uma aproximação relativista, encontrando a depois redescoberta equação de Klein-Gordon:
onde
A equação de Klein-Gordon, às vezes chamada de equação de Klein-Fock-Gordon (ou ainda Klein-Gordon-Fock) pode ser deduzida de algumas maneiras diferentes.
Usando-se a definição relativística de energia
chega-se à equação:
Essa expressão, por conter operadores diferenciais sob o radical, além de apresentar dificuldades computacionais, também apresenta dificuldades conceituais, já que se torna uma teoria não-local (pelo fato de a raiz poder ser expressa como uma série infinita). Por ser uma equação de segunda ordem não permite que fique bem definida a questão da normalização da função de onda.
Fock deduziu-a através da generalização da equação de Schrödinger para campos magnéticos (onde as forças dependem da velocidade). Fock e Klein usaram ambos o método de Kaluza-Klein para deduzi-la. O motivo, só mais tarde entendido, da inadequação desta equação ao átomo de hidrogênio é que ela se aplica bem somente a partículas sem carga e de spin nulo.
Equação de Dirac
Em 1928 Paul Dirac obteve uma equação relativística baseada em dois princípios básicos
- A equação deveria ser linear na derivada temporal;
- A equação deveria ser relativisticamente covariante.
A equação obtida por ele tinha a seguinte forma:
onde , , e não são números reais ou complexos, mas sim matrizes quadradas com N² componentes. Semelhantemente, as funções são na verdade matrizes coluna da forma
e as matrizes , , e devem ser hermitianas.
Comentários
Postar um comentário