equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/ G* = = / G* / - .=
Mecânica clássica e mecânica quântica
A dinâmica de uma partícula pontual de massa em um regime não-relativístico, ou seja, em velocidades muito menores que a velocidade da luz, pode ser determinada através da função lagrangiana[6][7]
,
/ G* = = / G* / - .=
em que (que são respectivamente coordenadas generalizadas para a posição e a velocidade da partícula) determinam o espaço de fase do sistema e é o potencial em que a partícula se move. Minimizando o funcional ação
/ G* = = / G* / - .=
encontra-se a equação de movimento para esse sistema,
,
/ G* = = / G* / - .=
que é a equação de Newton, desde que .
/ G* = = / G* / - .=
Existe outra formulação equivalente da mecânica clássica, conhecida como formulação hamiltoniana e que pode ser diretamente relacionada a formulação lagrangiana acima. Para se fazer contato entre as duas formulações, define-se o momento
,
/ G* = = / G* / - .=
de maneira que a função hamiltoniana é dada por
,
/ G* = = / G* / - .=
que para a escolha da lagrangiana acima, tem-se
.
/ G* = = / G* / - .=
Assim como no caso da função lagrangiana, a hamiltoniana descreve toda a dinâmica de um sistema clássico, portanto, considerando uma variação de tem-se um par de equações diferenciais de primeira ordem conhecidas como equações de Hamilton
,
/ G* = = / G* / - .=
e que equivale a equação de Newton, que é de segunda ordem. No formalismo hamiltoniano, usando a regra da cadeia, pode-se escrever qualquer variação temporal de uma função , em termos das equações de Hamilton acima, de modo que,
/ G* = = / G* / - .=
onde o parêntese de Poisson é definido como
.
/ G* = = / G* / - .=
Existem diversas maneiras de realizar a quantização de um sistema clássico, tais como quantização por integrais funcionais e quantização canônica. Esse último método em particular, consiste na substituição do parêntese de Poisson por comutadores[8]
,
/ G* = = / G* / - .=
onde , são operadores num espaço de Hilbert. Com essas substituições, o parêntese de Poisson entre duas coordenadas generalizadas torna-se
.
/ G* = = / G* / - .=
Um aspecto importante a ser observado é que os operadores e podem ser representados como os operadores diferencias
/ G* = = / G* / - .=
de maneira que a função hamiltoniana, torna-se um operador no espaço de Hilbert, chamado operador hamiltoniano que atua em uma função
,
/ G* = = / G* / - .=
que é a equação de Schrödinger.
Teoria Clássica de Campos
A formulação lagrangiana e a hamiltoniana da mecânica clássica são refinamentos da mecânica newtoniana e permite o tratamento de sistemas com um número finito de graus de liberdade. Considerando um sistema mecânico unidimensional com graus de liberdade, que consiste de partículas pontuais de massa , separadas por uma distância e conectadas entre si por uma mola de constante elástica . A lagrangiana para esse sistema é:
.
/ G* = = / G* / - .=
Esse sistema pode ser estendido facilmente para o limite em que e . No entanto, se o comprimento total do sistema estiver fixo, tem-se o limite contínuo , de modo que a lagrangiana terá a forma
,
/ G* = = / G* / - .=
onde representa o deslocamento da partícula relativa a posição no instante de tempo . Também, define-se as quantidades .
/ G* = = / G* / - .=
Generalizando essa discussão prévia para um sistema relativístico, tem-se uma lagrangiana que será uma função do campo , em que e das derivadas , dessa maneira, o funcional ação pode ser escrito como
.
/ G* = = / G* / - .=
Finalmente, a lagrangiana pode ser escrita como
,
onde , é conhecida como densidade lagrangiana.[9] A equação de Euler-Lagrange é:
.
/ G* = = / G* / - .=
Primeiras unificações. Equações relativísticas
Equação de Klein-Gordon
Como foi dito acima, quando Schrödinger primeiro procurou uma equação que regesse os sistemas quânticos, pautou sua busca admitindo uma aproximação relativista, encontrando a depois redescoberta equação de Klein-Gordon:
/ G* = = / G* / - .=
onde
A equação de Klein-Gordon, às vezes chamada de equação de Klein-Fock-Gordon (ou ainda Klein-Gordon-Fock) pode ser deduzida de algumas maneiras diferentes.
Usando-se a definição relativística de energia
/ G* = = / G* / - .=
chega-se à equação:
/ G* = = / G* / - .=
Essa expressão, por conter operadores diferenciais sob o radical, além de apresentar dificuldades computacionais, também apresenta dificuldades conceituais, já que se torna uma teoria não-local (pelo fato de a raiz poder ser expressa como uma série infinita). Por ser uma equação de segunda ordem não permite que fique bem definida a questão da normalização da função de onda.
Fock deduziu-a através da generalização da equação de Schrödinger para campos magnéticos (onde as forças dependem da velocidade). Fock e Klein usaram ambos o método de Kaluza-Klein para deduzi-la. O motivo, só mais tarde entendido, da inadequação desta equação ao átomo de hidrogênio é que ela se aplica bem somente a partículas sem carga e de spin nulo.
Equação de Dirac
Em 1928 Paul Dirac obteve uma equação relativística baseada em dois princípios básicos
- A equação deveria ser linear na derivada temporal;
- A equação deveria ser relativisticamente covariante.
A equação obtida por ele tinha a seguinte forma:
/ G* = = / G* / - .=
onde , , e não são números reais ou complexos, mas sim matrizes quadradas com N² componentes. Semelhantemente, as funções são na verdade matrizes coluna da forma
e as matrizes , , e devem ser hermitianas.
Oscilador harmônico quântico na mecânica Graceli generalizada quântica tensorial dimensional relativista de campos.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
O oscilador harmônico quântico é o análogo quântico do oscilador harmônico clássico. É um dos sistemas modelo mais importante em mecânica quântica, já que qualquer potencial pode ser aproximado por um potencial harmônico nas proximidades do ponto de equilíbrio estável (mínimo). Além disso, é um dos sistemas quânticos que admite uma solução analítica precisa.
Oscilador harmônico monodimensional
Hamiltoniano, energia e autofunções


No problema do oscilador harmônico monodimensional, uma partícula de massa está submetida a um potencial quadrático . Em mecânica clássica se denomina constante de força ou constante elástica, e depende da massa da partícula e da frequência angular .
O hamiltoniano quântico da partícula é:[1]
- / G* = = / G* / - .=
onde é o operador posição e é o operador momento . O primeiro termo representa a energia cinética da partícula, enquanto que o segundo representa sua energia potencial. Com o fim de obter os estados estacionários (ou seja, as autofunções e os autovalores do hamiltoniano ou valores dos níveis de energia permitidos), é necessário resolver a equação de Schrödinger independente do tempo
- . / G* = = / G* / - .=
- -
Pode-se resolver a equação diferencial na representação de coordenadas utilizando o método de desenvolver a solução em série de potências. Se obtém assim que a família de soluções é[2]
- / G* = = / G* / - .=
onde representa o número quântico vibracional. As primeiras seis soluções () se mostram na figura da direita. As funções são os polinômios de Hermite:
- / G* = = / G* / - .=
Não se devem confundir com o hamiltoniano, que às vezes se denota por H (ainda que é preferível utilizar a notação para evitar confusões). Os níveis de energia são
- . / G* = = / G* / - .=
Este espectro de energia destaca por três razões. A primeira é que as energias estão "quantizadas" e somente podem tomar valores discretos, em frações semi-inteiras , , , ... de . Este resultado é característico dos sistemas quânticos em que a partícula está confinada.[2]
A segunda é que os níveis de energia estão igualmente espaçados, ao contrário que no modelo de Bohr ou a partícula em uma caixa.
A última razão é que a energia mais baixa não coincide com o mínimo do potencial (zero neste caso). Assim, a energia mais baixa possível é , e se denomina "energia do estado fundamental" ou energia do ponto zero.
A energia do ponto zero é necessária para cumprir com o princípio da incerteza de Heisenberg, já que se a energia do estado fundamental for zero, tanto a energia potencial quanto a energia cinética da partícula seriam zero. Energia potencial zero implica que a partícula está localizada exatamente na origem (com △x = 0) e energia cinética zero implica que o momento da partícula é zero (△p = 0), ferindo assim o principio da incerteza, pois a incerteza na posição e no momento não podem ser ambos zero.[3]
Convém destacar que a densidade de probabilidade do estado fundamental se concentra na origem. Ou seja, a partícula passa mais tempo no mínimo do potencial, como seria de esperar em um estado de pouca energia. A medida que a energia aumenta, a densidade de probabilidade se concentra nos "pontos de retorno clássicos", onde a energia dos estados coincide com a energia potencial. Este resultado é consistente com o do oscilador harmônico clássico, para o qual a partícula passa mais tempo (e portanto é onde seria mais provável encontrá-la) nos pontos de retorno. Se satisfaz assim o princípio da correspondência.
Aplicação: moléculas diatômicas

Para estudar o movimento de vibração dos núcleos pode-se utilizar, em uma primeira aproximação, o modelo do oscilador harmônico. Se consideramos pequenas vibrações em torno do ponto de equilíbrio, podemos desenvolver o potencial eletrônico em série de potências. Assim, no caso de pequenas oscilações o termo que domina é o quadrático, ou seja, um potencial de tipo harmônico. Portanto, em moléculas diatômicas, a frequência fundamental de vibração será dada por[4]:
- /
que se relaciona com a frequência angular mediante e depende da massa reduzida da molécula diatômica.
Na mecânica quântica, o teorema de Hellmann – Feynman relaciona a derivada da energia total em relação a um parâmetro, ao valor esperado da derivada do Hamiltoniano em relação a esse mesmo parâmetro. De acordo com o teorema, uma vez que a distribuição espacial dos elétrons tenha sido determinada resolvendo a equação de Schrödinger, todas as forças no sistema podem ser calculadas usando a eletrostática clássica .
O teorema foi provado de forma independente por muitos autores, incluindo Paul Güttinger (1932),[1] Wolfgang Pauli (1933),[2] Hans Hellmann (1937) [3] e Richard Feynman (1939).[4]
O teorema afirma
/ G* = = / G* / - .=
Onde
- é um operador hamiltoniano, dependendo de um parâmetro contínuo ,
- , é um estado próprio (auto função) do Hamiltoniano, dependendo implicitamente de ,
- é a energia (autovalor) do estado , ie .
Note que há uma quebra do teorema de Hellmann-Feynman próximo a pontos críticos quânticos no limite termodinâmico.[5]
Prova
Essa prova do teorema de Hellmann – Feynman exige que a função de onda seja uma função própria do Hamiltoniano em consideração; no entanto, também se pode provar de maneira mais geral que o teorema se aplica a funções de onda sem função própria que são estacionárias (derivada parcial é zero) para todas as variáveis relevantes (como rotações orbitais). A função de onda Hartree – Fock é um exemplo importante de uma função própria aproximada que ainda satisfaz o teorema de Hellmann – Feynman. Um exemplo notável de onde a Hellmann – Feynman não é aplicável é, por exemplo, a teoria de perturbações de Møller – Plesset de ordem finita, que não é variacional.[6]
A prova também emprega uma identidade de funções de onda normalizadas - que as derivadas da sobreposição de uma função de onda com ela mesma devem ser zero. Usando a notação de braçadeira de Dirac, essas duas condições são escritas como
- / G* = = / G* / - .=
A prova então segue através da aplicação da regra do produto derivado ao valor esperado do Hamiltoniano visto como uma função de λ:
- / G* = = / G* / - .=
Prova alternativa
O teorema de Hellmann-Feynman é na realidade uma consequência direta e, em certa medida trivial, do princípio variacional (o princípio variacional de Rayleigh-Ritz ) do qual a equação de Schrödinger pode ser derivada. É por isso que o teorema de Hellmann-Feynman vale para funções de onda (como a função de onda Hartree-Fock) que, embora não sejam funções próprias do Hamiltoniano, derivam de um princípio variacional. É também por isso que ela se aplica, por exemplo, na teoria funcional da densidade, que não é baseada na função de onda e para a qual a derivação padrão não se aplica.
De acordo com o princípio variacional de Rayleigh-Ritz, as funções próprias da equação de Schrödinger são pontos estacionários do funcional (que denominamos Schrödinger funcional por questões de concisão):
/ G* = = / G* / - .=
Os autovalores são os valores que a funcional Schrödinger assume nos pontos estacionários:
/ G* = = / G* / - .=
(3)
Onde satisfaz a condição variacional:
/ G* = = / G* / - .=
Vamos diferenciar a Eq. (3) usando a regra da cadeia :
/ G* = = / G* / - .=
Devido à condição variacional, a Eq. (4), o segundo termo na Eq. (5) desaparece. Em uma frase, o teorema de Hellmann – Feynman afirma que a derivada dos valores estacionários de uma função (al) em relação a um parâmetro do qual ela pode depender pode ser computada apenas a partir da dependência explícita, desconsiderando a implícita . Devido ao fato de que o funcional de Schrödinger só pode depender explicitamente de um parâmetro externo através da equação Hamiltoniana. (1) segue trivialmente.
Aplicações de exemplo
Forças moleculares
Quando se trata de aplicações, a mais comum do teorema em questão é o cálculo de forças intramoleculares em moléculas. Isso permite que sejam feitos muitos cálculos degeometrias de equilíbrio - as coordenadas nucleares onde essas forças que atuam sobre os núcleos (que é devido aos elétrons e outros núcleos) desaparecem.
O parâmetro λ corresponde às coordenadas dos núcleos. Para uma molécula com 1 ≤ i ≤ N elétrons com coordenadas { r i } e 1 ≤ α ≤ M núcleos, cada um localizado em um ponto especificado { R α = { X α, Y α, Z α )} e com carga nuclear Z α, o núcleo Hamiltoniano preso é
- / G* = = / G* / - .=
O componente x da força que atua em um determinado núcleo é igual ao negativo da derivada da energia total em relação a essa coordenada. Empregar o teorema de Hellmann – Feynman é igual a
- / G* = = / G* / - .=
Apenas dois componentes do Hamiltoniano contribuem para a derivada requerida - os termos elétron-núcleo e núcleo-núcleo. Diferenciando os rendimentos hamiltonianos [7]
- / G* = = / G* / - .=
A inserção disso no teorema de Hellmann – Feynman retorna o componente x da força no núcleo dado em termos de densidade eletrônica ( ρ ( r )) e as coordenadas atômicas e cargas nucleares:
- / G* = = / G* / - .=
Valores de expectativa
Uma abordagem alternativa para aplicar o teorema de Hellmann – Feynman é promover um parâmetro fixo ou discreto que pareça em um hamiltoniano uma variável contínua apenas com o objetivo matemático de obter uma derivada. Os parâmetros possíveis são constantes físicas ou números quânticos discretos. Como exemplo, a equação radial de Schrödinger para um átomo do tipo hidrogênio é
- / G* = = / G* / - .=
que depende do número quântico azimutal discreto l . Promover l como um parâmetro contínuo permite que a derivada do Hamiltoniano seja tomada:
- / G* = = / G* / - .=
O teorema de Hellmann – Feynman permite a determinação do valor esperado de para átomos do tipo hidrogênio:[8]
- / G* = = / G* / - .=
Forças de Van der Waals
No final do artigo de Feynman, ele afirma que " as forças de Van der Waals também podem ser interpretadas como decorrentes de distribuições de carga com maior concentração entre os núcleos. A teoria Schrödinger perturbação por dois átomos que interagem com uma separação de R, grande em comparação com os raios dos átomos, conduz ao resultado de que a distribuição de carga de cada uma é distorcida de simetria central, um momento dipolar de ordem 1/R7 ser induzida em cada átomo. A distribuição de carga negativa de cada átomo tem seu centro de gravidade movido levemente em direção ao outro. Não é a interação desses dipolos que leva a força de van der Waals das, mas sim a atração de cada núcleo para a distribuição de carga distorcida de seus próprios elétrons que dá a atraente 1/R7 força ".
Teorema de Hellmann – Feynman para funções de onda dependentes do tempo
Para uma função de onda geral dependente do tempo que satisfaça a equação de Schrödinger dependente do tempo, o teorema de Hellmann – Feynman não é válido. No entanto, a seguinte identidade é válida:
- / G* = = / G* / - .=
Para
- / G* = = / G* / - .=
Prova
A prova baseia-se apenas na equação de Schrödinger e no pressuposto de que derivadas parciais em relação a λ e t podem ser trocadas.
Comentários
Postar um comentário