equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.


 G* =  =    /     G*       /    .


Mecânica clássica e mecânica quântica

A dinâmica de uma partícula pontual de massa  em um regime não-relativístico, ou seja, em velocidades muito menores que a velocidade da luz, pode ser determinada através da função lagrangiana[6][7] 

,

 G* =  =    /     G*       /    .

em que  (que são respectivamente coordenadas generalizadas para a posição e a velocidade da partícula) determinam o espaço de fase do sistema e  é o potencial em que a partícula se move. Minimizando o funcional ação

 

 G* =  =    /     G*       /    .

encontra-se a equação de movimento para esse sistema,

,

 G* =  =    /     G*       /    .

que é a equação de Newton, desde que 

 G* =  =    /     G*       /    .

Existe outra formulação equivalente da mecânica clássica, conhecida como formulação hamiltoniana e que pode ser diretamente relacionada a formulação lagrangiana acima. Para se fazer contato entre as duas formulações, define-se o momento  

,

 G* =  =    /     G*       /    .

de maneira que a função hamiltoniana é dada por

,

 G* =  =    /     G*       /    .

que para a escolha da lagrangiana acima, tem-se

.

 G* =  =    /     G*       /    .

Assim como no caso da função lagrangiana, a hamiltoniana descreve toda a dinâmica de um sistema clássico, portanto, considerando uma variação de  tem-se um par de equações diferenciais de primeira ordem conhecidas como equações de Hamilton 

,

 G* =  =    /     G*       /    .

e que equivale a equação de Newton, que é de segunda ordem. No formalismo hamiltoniano, usando a regra da cadeia, pode-se escrever qualquer variação temporal de uma função , em termos das equações de Hamilton acima, de modo que,

 G* =  =    /     G*       /    .

onde o parêntese de Poisson é definido como

.

 G* =  =    /     G*       /    .

Existem diversas maneiras de realizar a quantização de um sistema clássico, tais como quantização por integrais funcionais e quantização canônica. Esse último método em particular, consiste na substituição do parêntese de Poisson por comutadores[8]

,

 G* =  =    /     G*       /    .

onde , são operadores num espaço de Hilbert. Com essas substituições, o parêntese de Poisson entre duas coordenadas generalizadas torna-se

.

 G* =  =    /     G*       /    .

Um aspecto importante a ser observado é que os operadores  e  podem ser representados como os operadores diferencias

 G* =  =    /     G*       /    .

de maneira que a função hamiltoniana, torna-se um operador no espaço de Hilbert, chamado operador hamiltoniano que atua em uma função 

,

 G* =  =    /     G*       /    .

que é a equação de Schrödinger.

Teoria Clássica de Campos

A formulação lagrangiana e a hamiltoniana da mecânica clássica são refinamentos da mecânica newtoniana e permite o tratamento de sistemas com um número finito de graus de liberdade. Considerando um sistema mecânico unidimensional com  graus de liberdade, que consiste de  partículas pontuais de massa , separadas por uma distância  e conectadas entre si por uma mola de constante elástica . A lagrangiana para esse sistema é:

.

 G* =  =    /     G*       /    .

Esse sistema pode ser estendido facilmente para o limite em que  e . No entanto, se o comprimento total do sistema estiver fixo, tem-se o limite contínuo , de modo que a lagrangiana terá a forma

,

 G* =  =    /     G*       /    .

onde  representa o deslocamento da partícula relativa a posição  no instante de tempo . Também, define-se as quantidades  .

 G* =  =    /     G*       /    .

Generalizando essa discussão prévia para um sistema relativístico, tem-se uma lagrangiana que será uma função do campo , em que  e das derivadas , dessa maneira, o funcional ação pode ser escrito como

.

 G* =  =    /     G*       /    .

Finalmente, a lagrangiana pode ser escrita como

,

onde , é conhecida como densidade lagrangiana.[9] A equação de Euler-Lagrange é:

.

 G* =  =    /     G*       /    .

Primeiras unificações. Equações relativísticas

Equação de Klein-Gordon

Como foi dito acima, quando Schrödinger primeiro procurou uma equação que regesse os sistemas quânticos, pautou sua busca admitindo uma aproximação relativista, encontrando a depois redescoberta equação de Klein-Gordon:

 G* =  =    /     G*       /    .

onde

A equação de Klein-Gordon, às vezes chamada de equação de Klein-Fock-Gordon (ou ainda Klein-Gordon-Fock) pode ser deduzida de algumas maneiras diferentes.

Usando-se a definição relativística de energia

 G* =  =    /     G*       /    .

chega-se à equação:

 G* =  =    /     G*       /    .

Essa expressão, por conter operadores diferenciais sob o radical, além de apresentar dificuldades computacionais, também apresenta dificuldades conceituais, já que se torna uma teoria não-local (pelo fato de a raiz poder ser expressa como uma série infinita). Por ser uma equação de segunda ordem não permite que fique bem definida a questão da normalização da função de onda.

Fock deduziu-a através da generalização da equação de Schrödinger para campos magnéticos (onde as forças dependem da velocidade). Fock e Klein usaram ambos o método de Kaluza-Klein para deduzi-la. O motivo, só mais tarde entendido, da inadequação desta equação ao átomo de hidrogênio é que ela se aplica bem somente a partículas sem carga e de spin nulo.

Equação de Dirac

Em 1928 Paul Dirac obteve uma equação relativística baseada em dois princípios básicos

  1. A equação deveria ser linear na derivada temporal;
  2. A equação deveria ser relativisticamente covariante.

A equação obtida por ele tinha a seguinte forma:

 G* =  =    /     G*       /    .

onde  e  não são números reais ou complexos, mas sim matrizes quadradas com N² componentes. Semelhantemente, as funções  são na verdade matrizes coluna da forma

e as matrizes  e  devem ser hermitianas.








 

Oscilador harmônico quântico na mecânica Graceli generalizada quântica tensorial dimensional relativista de campos.


equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.








oscilador harmônico quântico é o análogo quântico do oscilador harmônico clássico. É um dos sistemas modelo mais importante em mecânica quântica, já que qualquer potencial pode ser aproximado por um potencial harmônico nas proximidades do ponto de equilíbrio estável (mínimo). Além disso, é um dos sistemas quânticos que admite uma solução analítica precisa.

Oscilador harmônico monodimensional

Hamiltoniano, energia e autofunções

Funções de onda para os primeiros seis autoestados, . O eixo horizontal mostra a posição y em unidades (h/2πmω)1/2. Os gráficos não estão normalizados.
Densidades de probabilidade dos primeiros autoestados (dimensão vertical, com os de menor energia na parte inferior) para as diferentes localizações espaciais (dimensão horizontal)

No problema do oscilador harmônico monodimensional, uma partícula de massa  está submetida a um potencial quadrático . Em mecânica clássica  se denomina constante de força ou constante elástica, e depende da massa  da partícula e da frequência angular .

hamiltoniano quântico da partícula é:[1]

  
 G* =  =    /     G*       /    .

onde  é o operador posição e  é o operador momento . O primeiro termo representa a energia cinética da partícula, enquanto que o segundo representa sua energia potencial. Com o fim de obter os estados estacionários (ou seja, as autofunções e os autovalores do hamiltoniano ou valores dos níveis de energia permitidos), é necessário resolver a equação de Schrödinger independente do tempo

 G* =  =    /     G*       /    .
 -

Pode-se resolver a equação diferencial na representação de coordenadas utilizando o método de desenvolver a solução em série de potências. Se obtém assim que a família de soluções é[2]

 G* =  =    /     G*       /    .

onde  representa o número quântico vibracional. As primeiras seis soluções () se mostram na figura da direita. As funções  são os polinômios de Hermite:

 
 G* =  =    /     G*       /    .

Não se devem confundir com o hamiltoniano, que às vezes se denota por H (ainda que é preferível utilizar a notação  para evitar confusões). Os níveis de energia são

.
 G* =  =    /     G*       /    .

Este espectro de energia destaca por três razões. A primeira é que as energias estão "quantizadas" e somente podem tomar valores discretos, em frações semi-inteiras , ... de . Este resultado é característico dos sistemas quânticos em que a partícula está confinada.[2]

A segunda é que os níveis de energia estão igualmente espaçados, ao contrário que no modelo de Bohr ou a partícula em uma caixa.

A última razão é que a energia mais baixa não coincide com o mínimo do potencial (zero neste caso). Assim, a energia mais baixa possível é , e se denomina "energia do estado fundamental" ou energia do ponto zero.

A energia do ponto zero é necessária para cumprir com o princípio da incerteza de Heisenberg, já que se a energia do estado fundamental for zero, tanto a energia potencial quanto a energia cinética da partícula seriam zero. Energia potencial zero implica que a partícula está localizada exatamente na origem (com △x = 0) e energia cinética zero implica que o momento da partícula é zero (△p = 0), ferindo assim o principio da incerteza, pois a incerteza na posição e no momento não podem ser ambos zero.[3]

Convém destacar que a densidade de probabilidade do estado fundamental se concentra na origem. Ou seja, a partícula passa mais tempo no mínimo do potencial, como seria de esperar em um estado de pouca energia. A medida que a energia aumenta, a densidade de probabilidade se concentra nos "pontos de retorno clássicos", onde a energia dos estados coincide com a energia potencial. Este resultado é consistente com o do oscilador harmônico clássico, para o qual a partícula passa mais tempo (e portanto é onde seria mais provável encontrá-la) nos pontos de retorno. Se satisfaz assim o princípio da correspondência.

Aplicação: moléculas diatômicas

Ver artigo principal: Molécula diatômica

Para estudar o movimento de vibração dos núcleos pode-se utilizar, em uma primeira aproximação, o modelo do oscilador harmônico. Se consideramos pequenas vibrações em torno do ponto de equilíbrio, podemos desenvolver o potencial eletrônico em série de potências. Assim, no caso de pequenas oscilações o termo que domina é o quadrático, ou seja, um potencial de tipo harmônico. Portanto, em moléculas diatômicas, a frequência fundamental de vibração será dada por[4]:

 

 G* =  =    /     G*       /    .

que se relaciona com a frequência angular mediante  e depende da massa reduzida  da molécula diatômica.







Na mecânica quântica, o teorema de Hellmann – Feynman relaciona a derivada da energia total em relação a um parâmetro, ao valor esperado da derivada do Hamiltoniano em relação a esse mesmo parâmetro. De acordo com o teorema, uma vez que a distribuição espacial dos elétrons tenha sido determinada resolvendo a equação de Schrödinger, todas as forças no sistema podem ser calculadas usando a eletrostática clássica .

O teorema foi provado de forma independente por muitos autores, incluindo Paul Güttinger (1932),[1] Wolfgang Pauli (1933),[2] Hans Hellmann (1937) [3] e Richard Feynman (1939).[4]

O teorema afirma

 G* =  =    /     G*       /    .

Onde

  •  é um operador hamiltoniano, dependendo de um parâmetro contínuo  ,
  • , é um estado próprio (auto função) do Hamiltoniano, dependendo implicitamente de  ,
  •  é a energia (autovalor) do estado , ie  .


Note que há uma quebra do teorema de Hellmann-Feynman próximo a pontos críticos quânticos no limite termodinâmico.[5]

Prova

Essa prova do teorema de Hellmann – Feynman exige que a função de onda seja uma função própria do Hamiltoniano em consideração; no entanto, também se pode provar de maneira mais geral que o teorema se aplica a funções de onda sem função própria que são estacionárias (derivada parcial é zero) para todas as variáveis relevantes (como rotações orbitais). A função de onda Hartree – Fock é um exemplo importante de uma função própria aproximada que ainda satisfaz o teorema de Hellmann – Feynman. Um exemplo notável de onde a Hellmann – Feynman não é aplicável é, por exemplo, a teoria de perturbações de Møller – Plesset de ordem finita, que não é variacional.[6]

A prova também emprega uma identidade de funções de onda normalizadas   - que as derivadas da sobreposição de uma função de onda com ela mesma devem ser zero. Usando a notação de braçadeira de Dirac, essas duas condições são escritas como

 G* =  =    /     G*       /    .

A prova então segue através da aplicação da regra do produto derivado ao valor esperado do Hamiltoniano visto como uma função de λ:

 G* =  =    /     G*       /    .

Prova alternativa

O teorema de Hellmann-Feynman é na realidade uma consequência direta e, em certa medida trivial, do princípio variacional (o princípio variacional de Rayleigh-Ritz ) do qual a equação de Schrödinger pode ser derivada. É por isso que o teorema de Hellmann-Feynman vale para funções de onda (como a função de onda Hartree-Fock) que, embora não sejam funções próprias do Hamiltoniano, derivam de um princípio variacional. É também por isso que ela se aplica, por exemplo, na teoria funcional da densidade, que não é baseada na função de onda e para a qual a derivação padrão não se aplica.

De acordo com o princípio variacional de Rayleigh-Ritz, as funções próprias da equação de Schrödinger são pontos estacionários do funcional (que denominamos Schrödinger funcional por questões de concisão):

 G* =  =    /     G*       /    .

Os autovalores são os valores que a funcional Schrödinger assume nos pontos estacionários:

 

 

 

  G* =  =    /     G*       /    .

(3)

Onde  satisfaz a condição variacional:

 G* =  =    /     G*       /    .

Vamos diferenciar a Eq. (3) usando a regra da cadeia :

 G* =  =    /     G*       /    .

Devido à condição variacional, a Eq. (4), o segundo termo na Eq. (5) desaparece. Em uma frase, o teorema de Hellmann – Feynman afirma que a derivada dos valores estacionários de uma função (al) em relação a um parâmetro do qual ela pode depender pode ser computada apenas a partir da dependência explícita, desconsiderando a implícita . Devido ao fato de que o funcional de Schrödinger só pode depender explicitamente de um parâmetro externo através da equação Hamiltoniana. (1) segue trivialmente.

Aplicações de exemplo

Forças moleculares

Quando se trata de aplicações, a mais comum do teorema em questão é o cálculo de forças intramoleculares em moléculas. Isso permite que sejam feitos muitos cálculos degeometrias de equilíbrio - as coordenadas nucleares onde essas forças que atuam sobre os núcleos (que é devido aos elétrons e outros núcleos) desaparecem.

O parâmetro λ corresponde às coordenadas dos núcleos. Para uma molécula com 1 ≤ i ≤ N elétrons com coordenadas { r i } e 1 ≤ α ≤ M núcleos, cada um localizado em um ponto especificado { R α = { X αY αZ α )} e com carga nuclear Z α, o núcleo Hamiltoniano preso é

 G* =  =    /     G*       /    .

O componente x da força que atua em um determinado núcleo é igual ao negativo da derivada da energia total em relação a essa coordenada. Empregar o teorema de Hellmann – Feynman é igual a

 G* =  =    /     G*       /    .

Apenas dois componentes do Hamiltoniano contribuem para a derivada requerida   - os termos elétron-núcleo e núcleo-núcleo. Diferenciando os rendimentos hamiltonianos [7]

 G* =  =    /     G*       /    .

A inserção disso no teorema de Hellmann – Feynman retorna o componente x da força no núcleo dado em termos de densidade eletrônica ( ρ ( r )) e as coordenadas atômicas e cargas nucleares:

 G* =  =    /     G*       /    .

Valores de expectativa

Uma abordagem alternativa para aplicar o teorema de Hellmann – Feynman é promover um parâmetro fixo ou discreto que pareça em um hamiltoniano uma variável contínua apenas com o objetivo matemático de obter uma derivada. Os parâmetros possíveis são constantes físicas ou números quânticos discretos. Como exemplo, a equação radial de Schrödinger para um átomo do tipo hidrogênio é

 G* =  =    /     G*       /    .

que depende do número quântico azimutal discreto l . Promover l como um parâmetro contínuo permite que a derivada do Hamiltoniano seja tomada:

 G* =  =    /     G*       /    .

O teorema de Hellmann – Feynman permite a determinação do valor esperado de  para átomos do tipo hidrogênio:[8]

 G* =  =    /     G*       /    .

Forças de Van der Waals

No final do artigo de Feynman, ele afirma que " as forças de Van der Waals também podem ser interpretadas como decorrentes de distribuições de carga com maior concentração entre os núcleos. A teoria Schrödinger perturbação por dois átomos que interagem com uma separação de R, grande em comparação com os raios dos átomos, conduz ao resultado de que a distribuição de carga de cada uma é distorcida de simetria central, um momento dipolar de ordem 1/R7 ser induzida em cada átomo. A distribuição de carga negativa de cada átomo tem seu centro de gravidade movido levemente em direção ao outro. Não é a interação desses dipolos que leva a força de van der Waals das, mas sim a atração de cada núcleo para a distribuição de carga distorcida de seus próprios elétrons que dá a atraente 1/R7 força ".

Teorema de Hellmann – Feynman para funções de onda dependentes do tempo

Para uma função de onda geral dependente do tempo que satisfaça a equação de Schrödinger dependente do tempo, o teorema de Hellmann – Feynman não é válido. No entanto, a seguinte identidade é válida:

 G* =  =    /     G*       /    .

Para

 G* =  =    /     G*       /    .

Prova

A prova baseia-se apenas na equação de Schrödinger e no pressuposto de que derivadas parciais em relação a λ e t podem ser trocadas.

 G* =  =    /     G*       /    .



Comentários

Postagens mais visitadas deste blog